
 
 
 
 
 

Tactile Modality is vital in subtle communication and conveying emotion 
  → A need for automatic social gesture recognition 
 

Previous Studies 
Classification with the Corpus of Social Touch (CoST) 
§  Manual feature engineering 
§  Highest accuracy: 60% 
     → need better feature extraction to minimize possible humans’ errors in  
          hand-picked features 
 

Goal 
Automatic and inexpensive feature extraction for accurate classification  
 

 

Motivation 

Discussion 
 

Future Work  
❏  Using SRP with different configurations and classifiers for a more optimal projected space 
❏  Measuring the generalization performance of each pipeline 
❏  Incorporating data from other modalities or other datasets of the tactile modality may 

enhance the classification of the gestures 
 

Conclusion 
❏  A more memory and computation efficient pipeline to classify social touch gestures 
❏  A stepping stone in developing real-time touch recognition 
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The Corpus of Social Touch (CoST) - Jung et al. (2017) 
❏  14 gestures were captured.  
      (Grab, hit, massage, pat, pinch, poke, press, rub, scratch, slap, squeeze,  
       stroke, tap, tickle) 
❏  3 variants (gentle, normal, rough) 
❏  The number of frames: 10 – 1747 (average: 191.78) 
❏  Each frame consists of 64 channels (8 x 8 sensor grid) 
❏  The channel values: 0 – 1023 

Preprocessing 
❏  Zero-padded to 1747 x 64 
❏  Incremented by 1 before zero-padding 
❏  Training : Validation: Test = 7 : 1 : 2 
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Dataset 

ConvLSTM Autoencoder 
❏  Capture spatio-temporal correlation 
❏  93,640 trainable parameters 
❏  Latent representation of size 2048 
 
Principal Component Analysis (PCA) 
❏  Extract the dominant patterns in the data matrix 
❏  Output of size 6400 
 
Sparse Random Projection (SRP) 
❏  Any high dimensional data can be converted into a lower 

dimensional space through random projection  
(Johnson-Lindenstrauss) 

❏  Random projection matrix density: 1/sqrt(n_features) 
❏  Output size:  
 

Experiment 

Feature Extraction 

Classification 

Convolutional Neural Network (CNN) 
❏  Classified 14 different gestures (not considering variants) 
❏  Trained 250 epochs for the best performance 
❏  Loss function:  

 
❏  Optimizer: AdaDelta 

Results 

❏  SRP showed the best 
performance with test accuracy 
61.88%  
(M=62%, SD=13%) 

❏  Misclassification mostly due to 
similarity in nature between 
certain gestures 

❏  Accuracy higher than the models 
from the previous studies 

❏  Robust to different gesture 
variations 

 


