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Abstract 
 Social touch is an important interaction in both human development and the field of human-robot 

interaction. In this paper we will examine whether it is possible to automatically extract significant features 
from the gesture data of the Corpus of Social Touch (CoST), which should eventually improve the accuracy of 
social touch classification. We experimented with three different feature extraction methods: Convolutional 
LSTM Autoencoder, Principal Components Analysis (PCA), and Sparse Random Projection (SRP). By 
evaluating the classification performance with a CNN model, SRP turned out to extract the best features by 
recording the training accuracy of 92.5% and the test accuracy of 61.88%. 

 
 

1. Introduction 
Social touch has a significant influence on human 

development [1], and it plays an increasing role in the field of 
human-robot interaction [2]. As previous studies [3][4] show the 
impacts of touch interactions on human’s emotions and attitudes 
[3][4], robots being capable of interacting with humans through 
social touch will contribute to the development of human-
computer interaction. 

To build a foundation for this, one of the most important 
tasks is to recognize social touch gestures and to interpret them. 
In their introduction of the Corpus of Social Touch (CoST), 
Jung et al. [5] conducted experiments to classify gestures, which 
resulted in the highest test accuracy of 60%. Prior to the 
experiments, 54 features including mean pressure, contact area, 
traveled distance, and duration were extracted using handpicked 
feature engineering. The criteria on which these features were 
deemed significant, however, appear rather arbitrary. It is highly 
likely that invaluable information that can differentiate one 
gesture from another has been accidentally discarded during this 
process. 

Hence, the goal of this study is to examine the scenarios 
where machines automatically extract features from the raw 
gesture data. We hypothesize that automatic feature learning can 
minimize the errors in humans’ manual feature engineering, 
which are mostly because of the lack of relevant domain 
expertise. Moreover, once automatic feature extraction becomes 
a reality, it will certainly speed up the workflow to classify 
gestures and make applications to recognize social touch in real-
time a possibility. 

 
2. Methodology 
2.1. The Data Set 

The data set we used is the Corpus of Social Touch (CoST), 
which was introduced by [6]. This corpus contains 7805 gesture 
captures of 14 different social touch gestures, which were 
performed either gently, normally or roughly on an 8 x 8 
pressure sensor grid attached to a plastic arm of a mannequin. 
The number of frames of each gesture capture varies in the 
range of 10 to 1747, and each frame consists of 64 channels 
ranging between 0 and 1023. 
 

2.2. Preprocessing 
Every sample was padded with zeros to have 1747 frames, 

which was the maximum number of frames among the entire 
data. This reshaped the data into the same size, which makes it 
easier to train machine learning models with existing libraries. 
In addition, feature extraction algorithms can obtain complex 
temporal and spatial information such as patterns of pressure 
over time given the whole sequences of pressure data.  

Before zero-padded, the whole data matrix was incremented 
by 1. This put the pressure values in the range of 1 to 1024, 
which distinguish them from empty values that were padded as 
0s. Then we divided all values by 1024 so that they are on a 
scale between 0 and 1. Each sample was of size 1747 x 64. Yet 
the data was very sparse because the average length of gesture 
capture from the original data was 191.78. A majority of frames 
(around 1200) in most samples were zeros. In order to create 
classification labels, we ignored the variants and used one-hot 
encoding [7] to embed the gesture labels into vectors where the 
size of each label is 14. Prior to all experiments, the data set was 
split into a training set (70%), a validation set (10%), and a test 
set (20%) as commonly used in practice. 

 
2.3. Feature Extraction 

The goal of this study is to let the machine learn meaningful 
features from raw data to improve accuracy of touch 
classification. We tried following three different models to 
reduce dimension and extract latent features: Convolutional 
LSTM Autoencoder (ConvLSTM-AE), Principal Component 
Analysis (PCA), and Sparse Random Projection (SRP). 

 
2.3.1. ConvLSTM-AE 

ConvLSTM shows good performance in capturing spatio-
temporal correlations [8]. We assumed that taking an approach 
similar to video processing [9] would work for gesture capture 
data, and therefore started with a simple autoencoder with 
ConvLSTM layers to extract latent representations of the data. 
Encoding part of the network consists of two ConvLSTM 
layers: one with 16 filters of size 3 x 3 returning a sequence, and 
the other with 32 filters of size 3 x 3 returning a single frame. 
Latent representation of size 8 x 8 x 32 is repeated 1747 times 
before decoding. A decoder consists of a ConvLSTM layer with  



16 filters of size 3 x 3 and one with 1 filter to generate the input 
data. The model had 93,640 trainable parameters, and used 
AdaDelta for an optimizer with learning rate 1.0 and loss 
function of mean squared error. 

 
2.3.2. PCA 

Principal component analysis (PCA) is usually used for 
dimension reduction by extracting the dominant patterns in the 
data matrix [10]. In this study, as the average length of the 
original samples was 192, we decided the number of 
components as 6400 to reduce the dimension around half as 
small (100 x 64). The output of PCA was then used as an input 
for a CNN classifier, which is described further in the 
classification section, to evaluate the performance. 

 
2.3.3. SRP 

According to the Johnson-Lindenstrauss lemma, any high 
dimensional data can be converted into a lower dimensional 
space through random projection [11]. We used Sparse Random 
Projection (SRP) implemented in Scikit-learn library [12] to 
extract a dense matrix from the sparse preprocessed data. The 
number of components, which is the dimensionality of the target 
projection space, was adjusted by the number of samples and 
the bound given by the Johnson-Lindenstrauss lemma as in (1), 
where ε refers to the squared distances ratio distortion. Density, 
which is ratio of non-zero component in the random projection 
matrix was calculated by 1/sqrt(number of features) as 
recommended by Li et al. [13]. The output of SRP (size 7682) 
was put into the CNN classifier to compare the results with 
other feature extraction methods. 
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Figure 2. Overall architecture of SRP-CNN 
 
2.4. Classification 
    Performance of classification shows how well the features 
reflect characteristics of the data. In order to evaluate the feature 
extractors introduced in the previous section, we built a baseline 
model using Convolutional neural network (CNN) [14] to 
classify the data into 14 different social gesture classes. First, 
we trained 50 to 100 epochs to see the loss trend, and for the 
actual classifier for better accuracy, we trained 250 epochs. The 

model architecture can be found in Figure 1, which was 
determined after several attempts with different filters and 
layers. We dropped out 25% of the units after the last 
convolution layer and 50% of the units after each dense layer. 
The number of trainable parameters was 3,117,294, and 
AdaDelta algorithm was used as an optimizer with learning rate 
1.0. The batch size was 64, and the loss function was categorical 
cross entropy as following. 
 
                        𝐿 𝑦, 𝑦 =  −  𝑦!" ∗ log 𝑦!"!
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Table 1. Results of feature extractions 

 
3. Results 

ConvLSTM-AE was not able to finish the training 
successfully with very slow decrease in loss only until 10 
iterations and no changes after that. In addition, training took 
too much time (2 hours per iteration with GeForce GTX 1080 
graphic cards). These happened because the size of input and 
output data was too sparse and big. Considering the time and 
cost efficiency and performance, we decided to move on to the 
other algorithms that are more efficient and are able to project 
the data well enough. 

PCA took 4 hours to fit and transform each sample into 6400 
components. For the classification task, the model was over-
fitted as test accuracy stayed at 29.08% while the training 
accuracy went up to 98.45%. 

SRP showed the best performance and time efficiency. It 
took 2 hours to fit, and the combination with CNN was also 
better than PCA with the test accuracy of 61.88% (M=62%, 
SD=13%). 

For SRP-CNN model, we computed accuracies per variant 
on test set, which resulted in 58% for gentle gestures, 68% for 
normal gestures, and 60% for rough gestures. A confusion 
matrix for this model can be found in Figure 3, and the overall 
architecture is provided in Figure 2. 

 
4. Discussion 

 SRP-CNN model provided the best result on the test set 
with the accuracy of 61.88%. Different accuracies upon variants 
show that the model classifies normal gestures more accurately 
than gentle or rough gestures. Based on Table 2 and a confusion 
matrix in Figure 3, we were able to find out that gentle and 
rough gestures are more likely to be misrecognized as other 
similar gestures. For example, rough grab can be misclassified 

 

Figure 1. CNN classification model 

 ConvLSTM-AE PCA SRP 
Output size 2048 6400 7682 
Training hours 20 4 2 
Training accuracy (%) - 98.45 92.50 
Test accuracy (%) - 29.08 61.88 



as squeeze, and rough rub and gentle scratch can be 
misclassified as one another. These gestures have similarities in 
nature, which are also confusing to humans, and they take a 
large portion of the misclassified cases. We can infer from the 
result that features extracted from SRP are containing enough 
information similar to human perception to recognize gestures 
up to certain level. 

Table 2 compares the result from our model with five other 
models experimented in the previous study by Jung et al. [5]. 
For rough gesture, SVM models [5] tend to perform better than 
our model by 2%. Nevertheless, our model produced higher 
overall accuracy, and for gentle and normal gesture, it 
performed better with remarkable differences. Normal gestures 
usually represent each gesture more clearly than other variants, 
and better performance with a big gap on normal gesture means 
that the quality of features is good enough even when compared 
with the handpicked features from [5]. From this result, we 
could conclude that automatic feature extraction through SRP 
can lead to better performance than manual feature engineering. 

  

 
Table 2. Accuracies per variant from SRP-CNN and models 
from study [5] 

 
5. Conclusion 
    The experiment conducted in this study shows that SRP can 
automatically extract meaningful features from raw CoST data 
for better classification of social touch gestures. This not only 
improves efficiency by skipping manual feature extraction, but 
also opens up the potential to be applied to a variety of topics, 
which makes machine learning more approachable. If more 
studies are conducted in the future to improve classification and 
even interpretation of the gestures, the spectrum of robots to 

interact with humans will be much broader. 
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 All Gentle Normal Rough 
SRP-CNN .62 .58 .68 .60 
Bayesian .57 .52 .59 .58 
Decision tree .48 .43 .49 .52 
SVM linear .59 .54 .60 .62 
SVM RBF .60 .54 .60 .62 
Neural Network .59 .52 .58 .59 

 

Figure 3. Confusion matrix of the result from SRP-CNN on 
the test set 


