
Generating Music-Driven
Choreography with Deep Learning

Songha Ban
STUDENT NUMBER: 2023907

THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF SCIENCE IN COGNITIVE SCIENCE & ARTIFICIAL INTELLIGENCE
DEPARTMENT OF COGNITIVE SCIENCE & ARTIFICIAL INTELLIGENCE

SCHOOL OF HUMANITIES AND DIGITAL SCIENCES
TILBURG UNIVERSITY

Thesis committee:

Dr. Sharon Ong
Dr. Gonzalo Napoles

Tilburg University
School of Humanities and Digital Sciences

Department of Cognitive Science & Artificial Intelligence
Tilburg, The Netherlands

May 2021

Preface

Throughout the study, I have received a great amount of support.

I would first like to thank my supervisor, Dr. Sharon Ong, for the valuable guidance.
Her weekly feedback, advice, and inspiration greatly helped me formulating the
research questions, proceeding with experiments, and organizing the results, from
which I could learn a lot.

I would also like to acknowledge Nataraja Academy for providing their dance
videos for the dataset and Ren et al. (Ren et al., 2020) for releasing the code of their
excellent work of dance synthesis in public. In addition, I would like to thank Uni-T
and TSDV DanceNation members for participating in the qualitative evaluation of the
dance generation results.

Finally, I want to thank my family, friends, and boyfriend for their feedback, support
and encouragement.

Generating Music-Driven Choreography with
Deep Learning

Songha Ban

Generating choreography is challenging as it requires knowledge in both dance techniques and
musical elements. In this work, to generate a high-quality dance dataset, different pose estimation
methods were explored, and a pose cleaning method was developed. For the actual dance genera-
tion task, an existing framework was modified to investigate different music encoding approaches
and to improve the performance. Specifically, LSTM and GRU were tested as a music encoder,
and a novel music feature generator was proposed to reconstruct music features from the gener-
ated dance. The results demonstrate that the proposed approach with GRU as a music encoder
performs better than the existing model, creating natural dance movements matching with the
music. A demo video of the experiments is available at https://youtu.be/UE9QnT59LlI.

1. Introduction

Dance is a performing art consisting of sequential rhythmical motion units (Kim et al.,
2003). Choreography is designing dance to express ideas and emotions. As choreogra-
phy is usually made with and performed with music, it harmoniously engages different
modalities such as motor, visual and auditory (Tang et al., 2018). However, generating
natural choreography is technically challenging because dance and music are abstract
art forms, and no established rules are defining the clear relationship between them
(Lee et al., 2018). Furthermore, modeling dance movements is complicated because of
the long-term spatio-temporal structures (Lee et al., 2019).

The generation of human body movements has been actively investigated recently.
It is essential for a wide range of applications including, but not limited to, robots,
gaming, animation, and virtual reality. While composing body movements into dances
can be intuitive and spontaneous (Madison et al., 2011), creating aesthetic and rhythmic
choreography is more complex as it requires creativity, diverse dance techniques, and
comprehension of musical elements. A successful choreography generation could be
beneficial in the field such as machine creativity, motion generation (Yalta et al., 2015),
and cross-modality generative tasks (Lee et al., 2019).

Previous studies have made various attempts to generate dance movements. Lee
et al. (2013) and Fan et al. (2012) generated dance in perspective of similarity-based re-
trieval, and Ofli et al. (2008) classified the genre of music first and then generated dance
movements accordingly. However, these approaches work only within the predefined
database or patterns and therefore limit the creativity and generalizability of the model.

This study aims to generate natural, novel, and beat-matching choreography that is
consistent with the musical content using deep learning. Two main goals to achieve this
are pose estimation and dance generation. For the first goal, different pose estimation
methods will be compared to find the best one to create a dataset for dance generation.
For the second goal, a deep learning framework will be developed to generate novel,
dynamic, and beat-matching choreography that is consistent with the musical content.

1

https://youtu.be/UE9QnT59LlI

Cognitive Science & Artificial Intelligence 2021

The focus is on extracting powerful representation of music and creating quality dance
movements that reflect the representation well enough. The dance in the second part of
the study, both for the dataset and the generation target, refers to a sequence of poses
extracted by pose estimation methods.

1.1 Research Question

This study was conducted based on the following research question:
RQ: “To what extent can deep learning generate natural and dynamic choreography

from music?”
One of the recent studies by Ren et al. (2020) successfully generated natural and

novel dance movements from the music with generative techniques. However, possible
limitations are causing a lack of dynamics, variety, and style consistency. First, the
dataset used for the training includes dances of extremely different genres such as
ballet and popping. Dancers specialize in one or a few styles of dance through long-
term training and continuous practice. Training different genres with not enough data
in each genre could have resulted in dance with little dynamics and style-inconsistency.
Second, dance styles selected for the dataset are not appropriate for generating quality
choreography. Pose sequences of popping are impossible to reflect all the movements
such as waves and pops, which are the main components of popping, because the pose
data has a limited number of joints. Also, K-pop dance is usually choreographed as
a group dance with complicated formations rather than an energetic solo dance. The
data is from solo dancer’s videos, which can influence the dynamics and variety of the
generated dance. To improve this, this study created a new dataset composed of selected
choreographies with more variety and dynamics.

Because dance in this study is represented as a sequence of poses, pose information
needs to be extracted from the dance videos to create a dataset. Several pose estimation
methods are available for converting videos to pose sequences, and popular methods
are OpenPose (Cao et al., 2019) and AlphaPose (Fang et al., 2017). Because pose data
output from these models can be messy, selection of an optimal algorithm and post-
processing of the pose data are significant to achieve better results. This will was
examined based on the following subquestion:

SQ1: What is the best approach to extract pose sequences from videos?
In addition, to improve the music encoder which extracts features of music, this

study will explore LSTM (Sak et al., 2014) and GRU (Cho et al., 2014) that are proven to
be effective in handling temporal information (Bai et al., 2018). Features from the music
encoder are important because they are used to generate pose sequences, and therefore
must contain useful information to create choreography. This leads to the following
subquestion:

SQ2: “Which of LSTM and GRU as a music encoder does achieve the best perfor-
mance?”

To make sure that encoded music features are a good representation to map between
dance and music and that the generated dance is matching the music content, the gener-
ated dance will be used to reconstruct the music features. Dancers can not only come up
with movements from music, but also can think of what musical elements such as beat,
tempo, accent structure, and emotions would fit when watching dance without audio.
The visual-based beat tracking method proposed by Pedersoli et al. (2020) also showed
that inference of music features from dance movements is achievable. Music feature
regeneration from the generated dance can be useful for obtaining better representations

2

S. Ban Dance Generation

of music and enhancing the expressiveness of the choreography. Moreover, in case of
success, it has the potential to be used as a cross-modal evaluation metric.

SQ3: “Is it possible to reconstruct music features from the generated dance? If so,
does it improve the overall performance?”

1.2 Summary of Contributions

The contributions of this study are summarized as follows. First, different pose estima-
tion methods on solo dance videos were evaluated and compared. Second, a method
to clean messy pose data was developed. Finally, the proposed music feature generator
saved training time and improved the overall performance.

2. Related Work

2.1 Pose Estimation

Pose estimation is estimating the configuration of the human body from an image or a
video. Recent studies have made remarkable advances in pose estimation. OpenPose is
a multi-person 2D pose estimation system to detect the human body and hand, facial,
and foot keypoints. It takes a bottom-up approach by using Part Affinity Field (PAFs)
which is information about limbs from the image (Cao et al., 2019). Because OpenPose
is only based on a single frame, it shows good results on clear images but disregards
the context over consecutive frames, and therefore can be unreliable on frames with
problems such as blurring due to fast motion or different lighting. AlphaPose (Fang
et al., 2017), in contrast, takes a top-down approach which is also called as Detect-and-
Track method (Girdhar et al., 2018) because it detects a bounding box first and then
estimates the pose. It is also single-frame-based as OpenPose. Pose Flow (Xiu et al., 2018)
is a pose tracker based on cross-frame poses, which is useful to extract poses from videos
and to indicate the same person across frames. It uses AlphaPose as a pose estimator
and fully considers spatio-temporal information to track poses. However, this does not
mean that Pose Flow performs better or is more appropriate for this experiment than the
other methods. It is possible that Pose Flow which takes cross-frame poses may not be
appropriate for this experiment, and therefore, further investigation is needed to select
the best pose estimation method.

Most of the previous studies about dance generation such as (Ren et al., 2020), (Lee
et al., 2018), and (Lee et al., 2019) used OpenPose to estimate poses from the dance
videos, but the results were reported to be messy, which could have had negative
impacts on the generated dance. This work differs from other work as it investigates
different pose estimators for dance generation specifically and applies a cleaning step to
polish the noisy pose data. No existing work has compared these techniques for creating
a dataset for dance generation.

2.2 Dance Generation

In recent years, researchers have proposed various approaches to generate dance move-
ments conditioned on music. Tang et al. (2018) used LSTM-autoencoder, and Lee et al.
(2018) used causal dilated highway convolutional blocks (CDHC) for an end-to-end
mapping between music and dance. They used L2 and L1 distance respectively, yet
L2 and L1 loss are demonstrated to ignore characteristics of some specific movements
(Martinez et al., 2017).

3

Cognitive Science & Artificial Intelligence 2021

Figure 1
Overview of the complete process. This research consists of two parts: pose estimation and
dance generation. They are two separate experiments but are also connected since the results of
pose estimation will be used as dataset for dance generation.

To overcome this problem, Ren et al. (2020) applied ST-GCN (Yan et al., 2018)
to pose sequences and computed perceptual loss to measure similarity between the
original pose sequence and the generated one. In addition, Lee et al. (2019) proposed a
more complicated framework consisting of a decomposition phase, where it learns basic
movements, and a composition phase, where it learns to compose the basic movements
to dance according to the given music. Common points of both studies are that they
used GANs (Goodfellow et al., 2014) and that they successfully generated natural, style-
consistent, and beat-matching dance movements. However, the movements were not
diverse and dynamic especially in genres other than ballet.

This study compares different deep learning models for encoding music features
which were not implemented in the previous work. In addition, this study will develop
an auxiliary generator that regenerates music features from the generated dance.

4

S. Ban Dance Generation

Figure 2
Sample poses extracted from the dataset by AlphaPose with 17 joints, AlphaPose with 26 joints,
and OpenPose with 25 joints (from the left to the right).

3. Pose Estimation

Pose estimation is the first part of this study, and it aims to find the best method to
extract pose sequences from dance videos to make a high-quality dataset for dance
generation. Different pose estimation frameworks were investigated to select the best
one to be used for this study.

3.1 Dataset

The dataset consists of carefully selected videos of open-style choreography performed
by a solo dancer. Open-style, which is also known as urban dance, is not limited to
one genre or specific techniques but draws inspiration from all different genres such
as street, hip hop, contemporary, and jazz, and therefore is remarkably creative and
expressive. The selected videos are mostly based on street dance or hip hop and meet
the following criteria: 1) the dance movements illustrate musical styles and beats well; 2)
the dance movements are dynamic with a variety of footwork, levels, and use of space;
3) the dance movements are big and clear enough so that the skeleton’s movements can
be recognized as real dance movements. The dance videos were provided by Nataraja
Academy and myself, and 50 out of 140 videos of total 115,986 frames, which is about
40% of the entire dataset, were used for this experiment. The 50 videos had the same
size of 640 x 320 and frame per second (fps) of 30.

3.2 Methods

The raw dance videos were fed into the pose estimation methods without any prepro-
cessing. OpenPose (Cao et al., 2019), AlphaPose (Fang et al., 2017), and Pose Flow (Xiu
et al., 2018), the most widely used frameworks, were used for this experiment to perform
pose estimation on solo dance videos.

3.2.1 OpenPose. OpenPose is a 2D multi-person pose estimation library where each
joint of the skeleton is represented as 2D coordinates. OpenPose has functions to detect
keypoints of body, hand, and face, but hand and face are not necessary for this task,
so only body detection was used. It takes a single image as an input and returns
coordinates of the keypoints from the image. As mentioned in the previous section,
OpenPose adopted a bottom-up approach using confidence maps to detect body parts

5

Cognitive Science & Artificial Intelligence 2021

and PAFs to associate parts. A greedy parsing algorithm is used to parse the confidence
maps and the PAFs, and they are assembled to be returned as a full body pose (Cao
et al., 2019). Because a demo file for OpenPose is available in executable (EXE) format, a
video can be directly given to the demo file which automatically splits the video into a
sequence of images and outputs the pose estimation result per frame. Since OpenPose
was developed for multi-person pose detection, it is important to make sure that the
input image contains only one person to guarantee accuracy. BODY_25 and COCO
are the two available models of OpenPose, and the default model is BODY_25. It is
documented that COCO is less accurate, hence BODY_25 was used for this experiment.

3.2.2 AlphaPose. The use of AlphaPose is similar to OpenPose: a 2D multi-person pose
estimator with each joint represented as coordinates. However, AlphaPose took a top-
down approach which detects a bounding box, generates pose proposals, and then
outputs the actual pose (Fang et al., 2017). Out of multiple models and the number
of keypoints available, Fast Pose model with 26 keypoints was used because it returns
poses in the most similar format as the OpenPose BODY_25. In addition, Fast Pose
trained with ResNet152, which had the highest average precision (AP) among models
with 17 keypoints, was used to compare with the others because most of the previous
dance generation studies used only 17 or 18 joints. Sample poses from OpenPose,
AlphaPose with 26 joints, and AlphPose with 17 joints can be found in Figure 2.

3.2.3 Pose Flow. The goal of Pose Flow is not pose estimation but pose tracking. It uses
poses estimated by AlphaPose as input to conduct a cross-frame analysis and label each
skeleton by tracking if a skeleton from one frame is the same person as a skeleton
from another frame (Xiu et al., 2018). Pose Flow was used in this study because the
cross-frame analysis is useful for video processing, and I expected it to improve the
results of AlphaPose. However, it did not improve or update the single-person pose
estimation result but only labels the skeletons. Therefore, Pose Flow was excluded from
the evaluation of this experiment, even though it can be useful for future work which
will be discussed in Section 6.1.

3.3 Post-processing

The output pose sequences from the above pose estimation methods can still be messy
because of missing frames and incorrect detection. Therefore, a pose cleaning method
was developed to improve the quality of the pose data. First, it filters out frames with
misdetection. When X ∈ RV ×2 is a set of coordinates of the keypoints, and i is an
index of the current frame, a function f that determines whether the frame contains
misdetection was defined as

f(Xi) = Jmax | Xi −Xprev |> 50K (1)

where

prev =

{
i− 2 if f(Xi−1) ∧ ¬f(Xi−2)

i− 1 otherwise
. (2)

To be specific, whether the pose is correct or not was estimated by checking if any
keypoint’s difference with its previous frame is too large, because it is impossible for any

6

S. Ban Dance Generation

Figure 3
The original framework (top) proposed by Ren et al. (2020) and my adapted framework (bottom)
for dance generation.

joint to travel from one position to another one far away within one frame that is 1/30
seconds. If the previous frame Xi−1 was incorrect detection, it computes the difference
with the one frame before, which was the correct frame. However, this applies only
when there is no more than one consecutive incorrect frame right before the current
frame. Otherwise, only the first incorrect frame is excluded, and the rest are still used
to compute differences with the next frame. Then, both missing frames and incorrect
frames are recovered using spline interpolation.

3.4 Evaluation Metrics

The number of joints, missing frames, incorrect detection, and confidence scores were
used as evaluation metrics. The number of joints was used to check if more joints can
reflect the dance better and if there is a difference in accuracy. The number of missing
frames was counted from the results of each pose estimation output, and confidence
scores were part of the output from the pose estimation. The number of incorrect
detection was estimated by the same method as in equation 1. For each metric except
for the number of joints, both mean and median were taken into account.

4. Dance Generation

The goal of dance generation is to learn a model G : X → Y where X is the music input
and Y is dance movements such that the distribution of generated dance G(X) is not
distinguishable from the distribution of the real dance Y . The dance movement data are
pose sequences extracted by the method selected in the pose estimation experiment.

7

Cognitive Science & Artificial Intelligence 2021

Figure 4
A detailed diagram of the proposed dance generation framework.

4.1 Dataset

To build the dataset, AlphaPose with 17 joints and pose cleaning were applied to all 140
videos with a total length of 9250 seconds. Because the sizes of the videos varied, pose
sequences were normalized per clip by relocating and scaling. For relocation, the pose
in the initial frame was located in the middle of the frame, and the rest of the frames
were adjusted. Then for scaling, the maximum dancer size was calculated by subtracting
nose position from the ankle position, and the poses were scaled in a way such that the
dancer size fit in the window of 640 x 320. In addition, because 17 joints do not include a
joint of the neck, we added it by computing the midpoint of the left and right shoulder,
so the final poses have 18 joints. The frame rate was adjusted from 30 to 10. Then, audio
was extracted from the videos with a sampling rate of 16000. It was converted to mono
to keep only one channel and was normalized with min-max scaling. Then both pose
and audio data were split into chunks of 5 seconds.

4.2 Methods

For the main framework, an end-to-end model proposed by Ren et al (2020) was
adapted, hence the original framework refers to the framework proposed by Ren et al.,
and my model or modified model refers to the framework modified by me in the rest
of the paper. In my framework, music feature generator was added additionally, which
regenerates music features from the generated pose sequences. Figure 4 is a diagram of
the framework modified for this study. For comparison of the original framework and
my framework, see Figure 3. The following sub-sections are about the details of each

8

S. Ban Dance Generation

component of the framework, where discriminators are the same as the original and the
rest are modified or newly proposed.

4.2.1 Music Encoder. Dance generator (Gd) is composed of music encoder (Em) and
pose generator (Gp). Music encoder as the first part of the dance generator transforms
the audio input X ∈ RT×S into a hidden sequence of music features Z ∈ RT×U where T
is the number of frames, S is the size of the audio input per frame, and U is the size of
the hidden features per frame. The encoder consists of 1D convolution, RNN, and one
fully connected layer. RNN part was tested with 2-layer bi-directional GRU (Cho et al.,
2014) and 2-layer bi-directional LSTM (Sak et al., 2014). The size of the hidden features
was 256 in the original model, but it was adjusted to 128 in the final model.

4.2.2 Pose Generator. Pose generator, as the second part of the dance generator, gen-
erates pose sequences Y ∈ RT×2V given the music features encoded by Em where V is
the number of joints. The pose generator consists of 1 linear layer, 3 residual blocks (He
et al., 2016), and the final linear layer as in the original model (Ren et al., 2020). In addi-
tion to the music features, an initial pose is also given as an input to the pose generator
in my model, which was inspired by Lee et al. (2019). The initial pose is a beginning
pose, which is the first frame of the pose sequence for training and the last frame of
the previous sequence for inference. The initial pose was added with the expectation
to work as a seed for a generation that can give diversity in movements given similar
audio sequences and to make the transition between different clips smooth for long-
term dance generation. Before the music features are fed into the pose generator, the
initial pose goes through one linear layer and is concatenated with the music features.

4.2.3 Music Feature Generator. Music feature generator (Gmf) regenerates the music
features from the generated pose sequence. It came from the idea that humans can
infer some audio features such as beat and tempo from watching dance, and therefore,
good dance movements should be able to regenerate the music features. A study about
dance beat tracking (Pedersoli, 2020) shows that this is possible. By training the music
feature generator, the generated dance can maximize reflecting the music features as
dance movements, and the music encoder will also be able to encode the most essential
features for making dance movements. The architecture of the music feature generator
is a reversed version of the pose generator: 1 linear, 3 residual blocks, and another linear
layer. A loss function for music feature generator which evaluates the similarity between
encoded music features and regenerated music features from generated poses is defined
as

LMF =

T∑
i=1

‖Em(xi)−Gmf (Gd(xi))‖1 (3)

where x is the raw audio input.

4.2.4 Discriminators. Local Temporal Discriminator (Dlocal) and Global Content Dis-
criminator (Dglobal) proposed by Ren et al. (2020) were used to evaluate the authenticity
of the generated dance and improve the quality. Local Temporal Discriminator assures
that consecutive frames are coherent. Similar to PatchGAN (Isola et al., 2017), it divides
a sequence of pose into sub-sequences and determines the realism of the sub-sequences.
Global Content Discriminator takes not only the whole pose sequence P but also the

9

Cognitive Science & Artificial Intelligence 2021

music features Z as input to achieve the harmony between music and dance. Then it
uses self-attention mechanism (Lin et al., 2017) to get a comprehensive embedding and
classifies whether the pose sequence matches the music features. The adversarial loss is
defined as

LGAN = Ey[logDlocal(y)] + Ex[log[1−Dlocal(Gd(x)]]+

Ex,y[logDglobal(x, y)] + Ex[log[1−Dglobal(x,Gd(x))]]+

λGPEx,y[(‖∇xDglobal(x,Gd(x))‖2 − 1)2]

(4)

where x and y are real music and pose sequence respectively, and λGP is a weight for
the gradient penalty term.

4.2.5 Loss functions. In addition to the adversarial loss and music feature loss, feature
matching loss and L1 loss are used for training the dance generator as implemented
by Ren et al. (2020). The feature matching loss (Wang et al., 2018) is similarity between
global features of real and generated dance. It was adopted to train the Global Content
Discriminator more steadily and is defined as

LFM = Ex,y

M∑
i=1

∥∥Di
global(x, y)−Di

global(x,Gd(x))
∥∥ (5)

where M is the number of layers in Dglobal. To calculate pixel-wise distance between the
real and generated pose sequences, L1 loss is defined as

LL1
=

2×V∑
j=1

‖yi −Gd(xi)‖1 . (6)

The full objective is

argmin
G

max
D
LGAN + LMF + λFMLFM + λL1

LL1
(7)

where λFM and λL1
are weights for the loss terms. Even though the original framework

included pose perceptual loss in the full objective, which is computed using features
extracted by pretrained ST-GCN, my model did not use it because it performed better
without the pose perceptual loss.

4.3 Implementation Details

The models in this study were implemented in PyTorch and were trained on an NVIDIA
GeForce RTX 3060 Ti GPU. The hyper-parameters were set as follows: T = 50, S = 1600,
U = 128, V = 18, λGP = 1, λFM = 1, and λL1

= 200. Adam optimizer (Kingma & Ba,
2015) was used for all the networks with a learning rate of 3e-4 for the dance generator,
the music feature generator, and the local temporal discriminator, and 5e-4 for the global
content discriminator.

4.3.1 Baselines. To compare my approach with the original framework, I evaluate the
following baselines and models: (1) Pretrained Ren et al.. The original model from Ren

10

S. Ban Dance Generation

Figure 5
Before (top row) and after (bottom row) applying the pose cleaning method

et al. (2020) trained with their data is used as the primary baseline; (2) Original. The
original framework from Ren et al. is trained with the new dataset created for this study,
and this is the second baseline; (3) LSTM. The modified framework for this study with
LSTM in the music encoder is evaluated; (4) GRU. The modified framework for this
study with GRU in the music encoder is evaluated.

4.4 Evaluation Metrics

To compare the baselines and my models, I used automatic metrics for quantitative
evaluation and real dancers’ feedback for qualitative evaluation. For quantitative eval-
uation, Frechet Inception Distance (FID) (Heusel et al., 2017) was used to assess the
similarity between the generated dances and the real dances. As traditional FID evalu-
ates the quality of images generated by GAN by comparing distributions, in this task,
the distance between the distribution of the generated dance and the distribution of
the real dance was measured. In addition, beat coverage and beat hit rate were used to
analyze if the music beats and motion beats from the generated dances are matching. As
introduced in Lee et al. (2019), beat coverage is the number of motion beats divided by
music beats (Bmotion/Bmusic), and beat hit rate is the number aligned beats divided by
total motion beats (Baligned/Bmotion), where the aligned beats Baligned is the number
of motion beats aligned with the music beats. Music beats were obtained by computing
onset strength (Ellis, 2007) from the audio, and motion beats were detected by using
standard deviation (Yalta et al., 2019).

For qualitative evaluation, 22 amateur and professional dancers were invited to
watch 6 pairs of dances generated with different styles of music by the Original model
and the GRU model, which were the best baseline and the best model from the quantita-
tive evaluation and manual observation. Each pair was labeled as (A, B) with a random
order instead of the actual model names. Then, the dancers were asked to answer 4
questions for each pair: (1) Which dance matches the music beats better? (2) Which dance is
more natural/realistic? (3) Which dance is more dynamic? (4) Which dance do you like more?.

5. Results

5.1 Pose Estimation

Table 1 is the result of simple evaluation of AlphaPose and OpenPose. OpenPose had
the least number of missing frames but not with a big difference with the AlphaPose.
AlphaPose with 17 joints had the least number of incorrect detections while OpenPose

11

Cognitive Science & Artificial Intelligence 2021

Table 1
Comparison of pose estimation methods

Method # joints # missing frames # incorrect detection confidence score

mean median mean median mean

AlphaPose1 17 20.0 6 76.2 46 0.82
AlphaPose2 26 19.9 6 127.4 83 0.84
OpenPose 25 15.3 3 339.1 340 0.62

Table 2
Result of quantitative evaluation. For FID, lower is better. For beat coverage and beat hit rate,
higher is better. The details of the baselines are described in Section 4.3.1

Method FID Beat Coverage (%) Beat Hit Rate (%)

Real dances - 60.3 91.5

Ren et al. 18.3 47.9 89.9
Original 16.6 50.0 91.2
LSTM 16.0 51.3 90.6
GRU (my model) 14.8 50.4 91.5

had 4.5 times as much. AlphaPose with 26 joints had the highest average confidence
score, while OpenPose had the lowest. Each metric shows different results, but the
number of incorrect detection was considered the most significant to determine the best
method because it directly influences the quality of pose data the most.

Although the number of missing frames is also important, the gap between Open-
Pose and AlphaPose was not noticeable. In addition, even though OpenPose had the
least missing frames, it had a lot of frames missing parts of the keypoints, while
AlphaPose had all the keypoints filled in. The confidence score was considered the least
important because it is output from the pose estimation system and therefore can be
model-dependent. In terms of the number of joints, 25 and 26 joints are more expressive
than 17 joints because they have keypoints of feet. However, what feet add is trivial
because most of the dance movements in the dataset are focused on arms, body, and legs
rather than on feet, and the number of incorrect detection was significantly higher than
17 joints. 17 is enough to represent dance movements from the dataset, and it leaves less
space to generate unrealistic poses for the training later as well. Therefore, AlphaPose
with 17 joints was selected to create a complete dataset for the actual dance generation
in Experiment 2.

After the best framework was selected, the pose cleaning method was applied to the
output pose sequences. It successfully recovered missing frames and incorrect detection
improving the overall quality of the pose sequences, making the dance movements look
more stable than before. Sample results can be found in Figure 5.

5.2 Dance Generation
5.2.1 Quantitative Evaluation. Table 2 shows the automatic metrics for the baselines
and the models. The original framework trained with my dataset performed better

12

S. Ban Dance Generation

Figure 6
Horizontal bar graphs show the ratio of the dancers’ preference on overall preference, realism,
dynamic, and beat matching. The pie graph is the ratio of the overall preferences for all 6 dances.
Orange is my model with GRU, and purple/blue is the original model trained with my dataset.

than the pretrained original model in all FID, beat coverage, and beat hit rate. The new
framework with LSTM in the music encoder was the best in beat coverage and slightly
worse in FID and beat hit rate than the original framework, yet still better than the
pretrained original model. The new framework with GRU in the music encoder was the
best in FID and beat hit rate. Overall, the differences between models are negligible in
these metrics.

5.2.2 Qualitative Evaluation. The qualities of dance generated by different models were
first manually compared. The pretrained model and my model with LSTM successfully
generated beat matching choreography, but the dance movements were relatively small
and unnatural. The original model trained with my dataset generated natural, beat
matching, and dynamic dances, and the movements were remarkably bigger and more
clear than the others. However, sometimes the movements were repetitive and not
matching with the music style. My model with GRU generated natural, beat matching,
and style-consistent dances. It generated more complicated, human-like movements
including shoulder movements and jumps, but the movements were not as big or
dynamic as the original model.

Figure 1 is the result of the evaluation by real dancers. As can be seen, dancers
preferred my model to the original model in 4 out of 6 dances, and even for the other
two dances, 50% preferred my model. They answered that my model’s dance is more
natural and realistic in 5 out of 6 dances, and more beat matching in 4 out of 6 dances. On
the other hand, the original model was more dynamic in 4 out of 6 dances. On average,
61% preferred the dance generated from my model to the one from the original model.

6. Discussion

The first aim of this study was to find the best pose estimation method for the dance
dataset, and the second aim was to generate natural, dynamic, and beat-matching

13

Cognitive Science & Artificial Intelligence 2021

Figure 7
Training loss of the GRU model over epochs.

dance. In this section, the results of the experiments, limitations, and future work will
be discussed addressing the research question and subquestions.

6.1 Pose Estimation

The first sub research question was "What is the best approach to extract pose sequences from
videos?". The result of the pose estimation experiment answers this question showing
that AlphaPose with 17 joints produced the least number of incorrect detection and
an acceptable number of missing frames. Also, interpolating the missing frames and
incorrect detection improved the quality of the pose sequences. While previous studies
(Ren et al., 2020), (Lee et al., 2018), (Lee et al., 2019) used OpenPose, and OpenPose
had the least number of missing frames, the experiment showed that it caused more
incorrect detection than AlphaPose, and there were a number of frames with parts of
the keypoints missing which also counted as incorrect detection. Because the pose data
is used for dance generation, the quality of the pose sequences can directly influence
the quality of generated dance in the latter task. By selecting the best pose estimation
method and cleaning the pose data, this study built the dance dataset of better quality
for the second experiment.

There are still limitations in the pose cleaning method. Even though it improved
the quality of the pose data, it still cannot find all the misdetections, especially when the
pose is consistently incorrect over several consecutive frames because it detects incor-
rect frames by computing displacements. Further exploration to improve the cleaning
method such as considering more frames and the context of the movements may be
beneficial for handling messy pose data for similar tasks.

14

S. Ban Dance Generation

Pose Flow was not used in this study because the dance video dataset only had
solo dance videos, but it can be used in the future to expand the dataset. There are not
a lot of dance datasets available because the videos need to have only one person at
a clean and stable angle. However, if Pose Flow is used for tracking one person in the
multi-person dance videos, there will be many more options available to build a dance
dataset. Moreover, it also opens up the potential for future study to generate group
dance with formations, not just solo dance in one position.

6.2 Dance Generation

The main difference between the original framework and my framework for dance
generation is the music feature generator. This answers the third subquestion: "Is it
possible to reconstruct music features from the generated dance? If so, does it improve the overall
performance?". The number of music features was adjusted to 128 to facilitate the music
feature regeneration and also to extract only essential features. The dance generated
by the original model with 256 music features tends to react to minor beats which real
dancers would have ignored. By reducing the size to 128, the music encoder was trained
to extract only essential features, and the smaller size made it easier for the music feature
generator to regenerate the music features from the generated dance. As a result, the
music feature generator successfully reconstructed music features from the generated
dance up to a certain level, and it improved the performance which can be seen in both
quantitative and qualitative results when the music encoder was GRU. Figure 7 shows
that the music feature loss (mf_loss) went down until training for 400 epochs when the
optimal training state was after 350 epochs.

The second subquestion was "Which of LSTM and GRU as a music encoder does achieve
the best performance?". The quantitative evaluation results show that the distribution of
the GRU-generated dance is more similar to the distribution of real dance than LSTM.
LSTM had a higher beat coverage, and the GRU had a higher beat hit rate, but with
only slight differences. After manual inspection, I found out that LSTM dances were
more reserved, unnatural, and repetitive than GRU dances. A similar result was found
in a previous study (Lee et al., 2019) as well that LSTM-generated dances collapsed
into certain movements regardless of the input music, and it was because of the de-
terministic nature of LSTM, which can disturb mapping to the highly unconstrained
dance movements. Some of the outputs from my LSTM model also showed similar
repetitive movements even though they were generated from different styles of music.
Moreover, for the LSTM model, the music feature generator did not converge, which
means it failed to regenerate music features from the generated dances. Meanwhile,
the GRU model did not have the same issues. It was able to generate more elaborate
movements proactively using shoulders and legs, and the music feature generator was
also successfully trained.

In addition, feeding the initial pose as an input to the pose generator not only saved
training time but also made the transition between each sequence of poses more smooth.
The original model trained for 800 epochs which took around 18 hours, but my model
trained only for 350 epochs which took around 4 hours. Furthermore, both the original
and my framework accept 50 frames for each sequence, which is about 5 seconds long,
and this makes it difficult to generate dance longer than 5 seconds. By setting the last
pose of the previous sequence as an initial pose of the current sequence, my model,
even though it was not perfect, was able to generate long-term dance with more natural
transitions.

15

Cognitive Science & Artificial Intelligence 2021

The main research question was "To what extent can deep learning generate natural
and dynamic choreography from music?". This study would answer that deep learning
can generate natural, dynamic, and beat-matching choreography. However, dynamic
and natural is a trade-off, as the original model was more dynamic but less natural,
and my model was the opposite. The overall results show that my dataset contributed
to better performance within the same framework, and my model performed better
than the baseline model. However, I had to rely on human evaluation more than the
automatic metrics, because the existing evaluation methods are not good and sophis-
ticated enough in practice. Therefore, developing better evaluation metrics for dance
generation is one important future research topic.

7. Conclusion

In this study, experiments to compare different pose estimation methods for dance pose
sequences and to compare different networks for dance generation framework were
conducted. The best pose estimation method, AlphaPose with 17 joints, was applied to
the dance videos to extract pose sequences, and then pose cleaning was performed to
complete a dataset for dance generation. The dance generation framework used GRU
to encode music features, and generated dance from the music features and a given
initial pose. A music feature generator was added to regenerate music features from the
generated dance to build a strong mapping between music and dance. This approach
can generate long-term natural, dynamic, and beat-matching choreography. However,
the dynamics and long-term generation still need to be improved to generate more
human-like dance movements, and the development of better metrics to quantitatively
evaluate the dance pose sequences remains as future work.

Acknowledgements

A part of the dance video dataset used in this study was provided by Nataraja Academy.

16

S. Ban Dance Generation

Self-reflection

Working on this bachelor thesis was an invaluable experience. As a student passionate
about deep learning, and as an amateur dancer having danced for the whole life,
combining different interests of mine was a big pleasure and motivation. Even though
I underestimated the topic and was being overly ambitious at the beginning, I learned
how to specify the goals, design the study, plan for the experiments, and analyze the
results throughout the study. Moreover, I only focused on generating dance itself at first,
but later I realized it is also very important to have solid metrics for evaluation. It was
challenging for me to implement the evaluation metrics, but this process let me explore
and learn more about different metrics used for GAN and the ideas behind them. In
addition, while struggling to put my ideas and research into clear text, I learned how
to use mathematical equations and notations for clarification. Although I was not able
to test out all the ideas I had for this study because of the limited amount of time, I
appreciate that I was able to gain more insights about cross-modal generative tasks and
handling of spatio-temporal data, which I can expand for my future works.

17

Cognitive Science & Artificial Intelligence 2021

References
Bai, S., Kolter, J. Z., & Koltun, V. (2018). An empirical evaluation of generic convolutional and

recurrent networks for sequence modeling. arXiv.
Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., & Sheikh, Y. A. (2019). Openpose: Realtime

multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis
and Machine Intelligence.

Cho, K., van Merriënboer, B., Bahdanau, D., & Bengio, Y. (2014). On the properties of neural
machine translation: Encoder–decoder approaches. In Proceedings of SSST-8, Eighth Workshop
on Syntax, Semantics and Structure in Statistical Translation, (pp. 103–111)., Doha, Qatar.
Association for Computational Linguistics.

Ellis, D. P. (2007). Beat tracking by dynamic programming. Journal of New Music Research, 36(1),
51–60.

Fan, R., Xu, S., & Geng, W. (2012). Example-based automatic music-driven conventional dance
motion synthesis. IEEE Transactions on Visualization and Computer Graphics, 18(3), 501–515.

Fang, H. S., Xie, S., Tai, Y. W., & Lu, C. (2017). RMPE: Regional Multi-person Pose Estimation.
Proceedings of the IEEE International Conference on Computer Vision, 2017-Octob, 2353–2362.

Girdhar, R., Gkioxari, G., Torresani, L., Paluri, M., & Tran, D. (2018). Detect-and-Track: Efficient
Pose Estimation in Videos. Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 350–359.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., &
Bengio, Y. (2014). Generative adversarial networks. NIPS’14, 2, 2672–2680.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition.
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
2016-December, 770–778.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., & Hochreiter, S. (2017). GANs trained by a
two time-scale update rule converge to a local Nash equilibrium. Advances in Neural
Information Processing Systems, 2017-Decem(June 2019), 6627–6638.

Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. (2017). Image-to-image translation with conditional
adversarial networks. Proceedings - 30th IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, 2017-January, 5967–5976.

Kim, T.-h., Park, S. I., & Shin, S. Y. (2003). Rhythmic-motion synthesis based on motion-beat
analysis. ACM Transactions on Graphics, 22(3), 392–401.

Kingma, D. P. & Ba, J. L. (2015). Adam: A method for stochastic optimization. 3rd International
Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, 1–15.

Lee, H. Y., Yang, X., Liu, M. Y., Wang, T. C., Lu, Y. D., Yang, M. H., & Kautz, J. (2019). Dancing to
music. arXiv, (NeurIPS), 1–11.

Lee, J., Kim, S., & Lee, K. (2018). Listen to dance: Music-driven choreography generation using
autoregressive encoder-decoder network. CoRR, abs/1811.0.

Lee, M., Lee, K., & Park, J. (2013). Music similarity-based approach to generating dance motion
sequence. Multimedia Tools and Applications, 62(3), 895–912.

Lin, Z., Feng, M., Dos Santos, C. N., Yu, M., Xiang, B., Zhou, B., & Bengio, Y. (2017). A structured
self-attentive sentence embedding. ICLR.

Madison, G., Gouyon, F., Ullén, F., & Hörnström, K. (2011). Modeling the Tendency for Music to
Induce Movement in Humans: First Correlations With Low-Level Audio Descriptors Across
Music Genres. Journal of Experimental Psychology: Human Perception and Performance, 37(5),
1578–1594.

Martinez, J., Black, M. J., & Romero, J. (2017). On human motion prediction using recurrent
neural networks. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, 4674–4683.

Ofli, F., Demir, Y., Yemez, Y., Erzin, E., Tekalp, A. M., Balcı, K., Kızoğlu, , Akarun, L.,
Canton-Ferrer, C., Tilmanne, J., Bozkurt, E., & Erdem, A. T. (2008). An audio-driven dancing
avatar. Journal on Multimodal User Interfaces, 2(2), 93–103.

Pedersoli, F. (2020). Dance beat tracking from visual information alone. Proceedings of the 21th
International Society for Music Information Retrieval Conference, ISMIR 2020.

Ren, X., Li, H., Huang, Z., & Chen, Q. (2020). Self-supervised Dance Video Synthesis
Conditioned on Music. Proceedings of the 28th ACM International Conference on Multimedia,
46–54.

Sak, H., Senior, A., & Beaufays, F. (2014). Long short-term memory recurrent neural network
architectures for large scale acoustic modeling. In INTERSPEECH.

18

S. Ban Dance Generation

Tang, T., Jia, J., & Mao, H. (2018). Dance with melody: An LSTM-autoencoder Approach to
Music-oriented Dance Synthesis. MM 2018 - Proceedings of the 2018 ACM Multimedia
Conference, 1598–1606.

Wang, T. C., Liu, M. Y., Zhu, J. Y., Tao, A., Kautz, J., & Catanzaro, B. (2018). High-Resolution
Image Synthesis and Semantic Manipulation with Conditional GANs. Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, 8798–8807.

Xiu, Y., Li, J., Wang, H., Fang, Y., & Lu, C. (2018). Pose flow: Efficient online pose tracking.
BMVC.

Yalta, N., Ogata, T., & Nakadai, K. (2015). Sequential Deep Learning for Dancing Motion
Generation. Technical Report of Japanese Society for Artificiial Intelligence, 43–49.

Yalta, N., Watanabe, S., Nakadai, K., & Ogata, T. (2019). Weakly-Supervised Deep Recurrent
Neural Networks for Basic Dance Step Generation. Proceedings of the International Joint
Conference on Neural Networks, 2019-July(June 2020), 1–8.

Yan, S., Xiong, Y., & Lin, D. (2018). Spatial temporal graph convolutional networks for
skeleton-based action recognition. 32nd AAAI Conference on Artificial Intelligence, AAAI 2018,
7444–7452.

19

Cognitive Science & Artificial Intelligence 2021

Appendices
Appendix A: Training loss

Figure 1
Training loss of the baseline and the models over the training epochs.

20

S. Ban Dance Generation

Appendix B: Github Repository

https://github.com/SonghaBan/DancingAI

21

https://github.com/SonghaBan/DancingAI

	Introduction
	Research Question
	Summary of Contributions

	Related Work
	Pose Estimation
	Dance Generation

	Pose Estimation
	Dataset
	Methods
	Post-processing
	Evaluation Metrics

	Dance Generation
	Dataset
	Methods
	Implementation Details
	Evaluation Metrics

	Results
	Pose Estimation
	Dance Generation

	Discussion
	Pose Estimation
	Dance Generation

	Conclusion
	Appendices

